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0. Introduction.

The theme of the ComCon conferences is the unification of communications

and control. Thus. methods and results that are common to the two areas are

of central interest. This paper contains a discussion of a topic that is in

this general spirit: relations that exist between signal detection and

information theory. These relations are not contained in existing textbooks

on information theory and/or signal detection. They have been developed in

recent years as a result of specific needs: they are essential in obtaining

solutions to channel capacity problems when the noise sample paths comprise an

infinite-dimensional linear manifold.

C Channel capacity is one of the most basic problems of information theory.

In many setups, such as that of the DUC (discrete memoryless channel), the

basic mathematical structure is so simple that measure-theoretic questions do

not arise. The situation changes radically when one considers more

complicated channels, such as the continuous-time Gaussian channel with

memory. Even in this case, the actual complexity of the problem is sometimes -.

masked by mathematically inadmissible simplifications and/or by simply

ignoring some of the more difficult problems. In fact. a rigorous mathe- K .

matical analysis of capacities of such channels, which include some of the i

most widely-used models in information 
theory, cannot be completely carried

out without the use of measure theory. While this may be widely recognized.

it may be less obvious that there are some very strong relations between
n For

channel capacity problems and some well-known problems in signal detection. I-z-

Before proceeding, it is necessary to define what will be meant here by od 0

signal detection. The problems to be considered are parametric: the

statistical distributions are known for both the noise process and the t.ion/
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signal-and-noise process. One of the first questions that need to be

considered in such a problem is whether or not the mathematical model is

reasonable. Since most practical problems do not permit zero probability of

error in deciding whether or not signal is present (singular detection), the

mathematical model should first be checked to determine if the likelihood

ratio (Radon-Nikodym derivative) exists. If it does exist, then various

criteria dictate the use of the likelihood ratio, or some monotone function of

the likelihood ratio, as the test statistic. For the purposes of this paper,

"signal detection" is limited to these two aspects: conditions for existence

of the likelihood ratio, and (when such conditions are satisfied) the form of

the likelihood ratio. These are important to any detection problem. Not

considered here are more specialized aspects of signal detection, such as

error probabilities, approximation of optimu detectors, etc. It will be seen

that existence of, and expressions for, likelihood ration are essential to

some of the basic results In channel capacity.

The following sections give some preliminary definitions, then a

discussion of relations between information capacity and signal detection,

followed by a discussion of relations between coding capacity and signal

detection.

1. Basic Assumptions and Definitions.

The problems to be considered are those where the processes of interest

have sample functions belonging to a real separable Hilbert space. H. with

inner product <,,-> and associated norm 11,11. The noise process will always be

denoted by N; it corresponds to a probability measure PN. It will be assumed

WLOC that H is the smallest closed set A such that pN[A] = 1. All measures

will be probability measures; they are always understood to be defined on the
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Borel a-field, denoted by 3[H]. In particular, measures on HxH are on the

a-field B[H]xB[H]. If pZ and pW are two measures on H (or two on HxH), then

(Z AW means that pZ is absolutely continuous with respect to p: for any

measurable set A, pW(A) = 0 implies that pZ(A) = 0. If the measures are

mutually absolutely continuous, this will be denoted by p Z - p. In the

language of signal detection, the detection problem is then nonsingular.

Singular detection is understood to mean a problem where zero probability of

error is possible in making decisions. Usually nonsingular detection is taken

to mean that matual absolute continuity holds, and it will be seen that this

is the important property in applications to channel capacity. The situation

where the measures are neither orthogonal nor mutually absolutely continuous

is sometimes called "intermediate-singular"; it arises less frequently in the

channel capacity problems.

To each such noise process N. there exists a covariance operator RN; it is

defined by

<RNu.v> = I Hx.u>(x.v>(x).

H

The process N is assumed to have zero mean. RN is self-adjoint, strictly

positive, and will be assumed to have finite trace. The latter condition is

satisfied, for example, when H = L2[O,T ] and N = (Nt) is a m.s. continuous

stochastic process. In that case, RN is simply the integral operator having

the noise covariance function as its kernel.

The commication channel to be considered is defined as follows. If X is

the channel input (either a sample function from a stochastic process or a

member of a set of code words). then the channel output Y is defined as Y -

f(X.N), where f: HxH -. H Is a measurable mapping. In the case that X is a

stochastic process, it will be assumed that X and N are statistically

3



independent, so that their Joint probability measure p. on HxH satisfies

P N = N% S 0 denotes product measure. In the additive channel, f(xy) =

A(x) + y. where A is some coding or constraint function. However, in the

interest of generality, the channel will not initially be assumed to be

additive.

Given these definitions, the known signal and stochastic signal detection

problems can be identified. The known signal detection problem is for testing

the hypothesis that an observation is from the process N against the

hypothesis that the observation is from the process f(x.N). where x is fixed.

The two measures of interest are then PN and NofCl. where f (y) = f(xy).x x

Thus. jNofC [A] = pN(y: f(xy) C A). The stochastic signal detection problem

involves the same noise process, but now the signal-and-noise process is

Y = f(X.N), where X is a stochastic process:

=(A) = X% ((x.y): f(x.y) 6 A).

In the case of simple channels, such as those without memory, information capa-

city and coding capacity are typically equal. This may no longer be true for

more general channels. In general, due to Fano's inequality [1]. information

capacity suitably defined is an upper bound on coding capacity. In the

following, relations to signal detection are discussed for both of these

definitions of channel capacity.

The probabilities of interest have been defined as being on the Borel

a-field of a Hilbert space. However, the structure can be more general. Some

of the results to be discussed do not require a linear space structure.

Others can be extended to more general linear spaces, such as a class of

linear topological vector spaces [2].
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2. Nutual Information. Information Canacitv. and Signal Detection.

Suppose that the channel input is a sample function from a stochastic

process X. Based on Shannon's original definition, the (average) mutual

information between X and the channel output Y can be expressed as follows.

Let yXy be the joint probability measure of (XY) on HxH; it is defined by

xy() = X% ((x.y): (x.f(x.y)) C A).

The general definition for mutual information I(X.Y) is then defined to be

N j (Ai)
Sup i l (A) log

NA .... N=l

In this expression, the supremum is taken over all N 1 and all measurable

partitions A,.....AN of the product space HxH. Such a definition is of course

very widely used when the probabilities of interest are for discrete random

variables. An expression that is more convenient for general probabilities

has been proved by Dobrushin [3]. That is, the mutual information of X and Y

is infinite if it is false that «XY . PX4; otherwise, its value (which may

be infinite) is given by

I(X.Y) = I log[d/dpAJd~.

HxH

It is clear that this definition, one of the most basic for information

theory, involves absolute continuity and calculation of a likelihood ratio.

For a particular channel (a triplet [f.X,N]), one would like to have a general

method of determining if absolute continuity of PXY and Px@py holds, and -- if

it does hold - finding the likelihood ratio dPxy/dux@PY. In fact, such

methods can be applied, based on the known signal and stochastic signal

detection problems.
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Theorem 1 [4]: If the known signal detection problem is nonsingular for

almost all x:

a.e. d(x).

then P - P and p. " Xi"

If the channel model is such that the likelihood ratio dji /d4v exists,

then the next order of business is to give its form. This can also be done

using the known signal and stochastic signal likelihood ratios. Unfortu-

nately, the precise statement of this condition involves extension of the

original measures to completed a-fields, as in the following theorem.

Theorem 2 [5]: Let B[H be the completion of B[H] with respect to pX and

B[H~xM[H] the completion of B[H]x3[H] with respect to pX@N, with WX and X@P

the extended measures. Suppose that

(a) Nof1l - p a.e. djX(x);

(b) the map g: (x.y) -, (dNofxl)/d(y) is B[H]xU[H]/[R I ] measurable;

(c) 'H1 lOg(dpy/dpN) ](y)dJpy(y) <m

Then

I (XY) = 1H rH1l(dNOfx ON/d') 6f 6(y)d(x)

- XH[I o,(dpy/dpN) (y)]djy(y).

In some important applications, condition (a) of Theorem 2 implies conditions

(b) and (c). at least for some version of the function g. Thus. in such

instances, the determination of the existence of the Radon-Nikodym derivative

didp i and the calculation of the mutual informmtion can be carried out

if the known signal detection problem pN vs. PNof~l is nonsingular for almost

all signal paths x. and the likelihood ratios dPNOf I/dPN and can be
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determined. A necessary condition for the known signal detection problem to

be nonsingular for fixed x is that x be in the range of 4. the square root of

the covariance operator of N; this condition is also sufficient if N is

Gaussian [6].

Information capacity is the supreum of the mutual information I(XY) over

some class of admissible signal processes X. The preceding results provide

insight on the constraints that should be applied if the capacity is to be

finite. In the case that the channel is additive, f(x.y) = A(x) + y, and N is

Gaussian, one can show that the conditions of Theorem 2 are satisfied when

PN ~ PNOf, 1 for almost all x, and that an upper bound on the mutual informa-

tion is given by Trace RNRAl kj . where RAX is the covariance operator of

PxoA - 1 . In fact. if the channel is additive and N is Gaussian. one can show

[7] that a necessary and sufficient condition for finite capacity is that each

admissible signal process X and coding function A satisfy a constraint of the

2 2 -M 2form E IIA(x)l,N P for some finite P. where lull N= ,,RNuI, . Now, given a

general additive channel with second-order noise process N (i.e.,

E Plxl 2 (2 <). and a constraint given in terms of the noise covariance, it is

known [8] that the channel capacity is minimized if the noise is Gaussian.

Thus, one can conclude that the above necessary and sufficient condition for

finite capacity when the channel is additive and the noise is Gaussian is also

necessary when the noise is permitted to be nonGaussian, but with trace-class

covariance. Of course, the constraint way not be given in this form, but

finite capacity implies existence of such a constraint. Typically, a

constraint may have the form E IIXII2  P. where 11-11 is the RKHS norm of the

covariance RO . with parameter set H, Ro(u.v) = (R~u.v>. and RW is a self-

adjoint and non-negative bounded linear operator in H. If Rw 0 0, then
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Ixll : II= 1 xll 2 . If Rw i RN. such a constraint results in a "mismatched"

channel, meaning that the constraint covariance is not matched to the channel

noise covariance. One can consider R to be the covariance operator of a zero

mean Gaussian process W. One will wish to consider relations that must exist

between N and W in order that the capacity be finite, and here again the

result has striking similarities to well-known results in signal detection.

A fundamental result for the stochastic signal detection problem when both

processes are zero-mean Gaussian is the following: mutual absolute continuity

of PN and P holds if and only if the two covariance operators satisfy

RN = R(I+S)zK where S is Hilbert-Schmidt and (I+S)-1 exists [6]. This can be

compared with the following condition for finite information capacity.

Theorem 3 [9]: Suppose that N is Gaussian. that f(x.y) = A(x) + y. and that X

and A must satisfy the constraint E 2 A(x)II 2 P. Then the capacity will be

finite if and only if there exists a densely-defined self-adjoint operator S

in H such that (I+S)-l exists and is bounded. and RN = R4(I+S)0W.

It follows that the information capacity of the mismatched channel will be

finite if the constraint RIM norm 1i- 1 w is given by a covariance operator Rw

corresponding to a zero-mean Gaussian measure pW nuch that PW - PN. However,

this sufficient condition is obviously not a necessary condition.

3. Coding Camcitv and Simnal Detection.

Coding capacity requires a more specific discussion than information

capacity, since the definition of a code depends on the nature of the channel.

For simplicity, only the additive channel will be considered here, and for the

continuous-time channel: the code words must be elements of L2 [OT ] . where T

is permitted to become large.
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Let T be fixed. A code (k.FT.e) is a set of k elements of L2[0.T ], say

xl.x2 ..... xk. each belonging to the set FT C B[L2[O.T]], together with a

measurable partition C1 ..... Ck of L2[0.TJ such that T - ] 2 1-& for i=

Ti
1.2....k. p denotes the probability measure defined by N when the parameter

set is restricted to [O.T]. Typically. FT will be defined as the set of all

elements x satisfying a constraint of the form IxllT Fr. where 11-11T isa

RKHS norm. defined by a fixed covariance function r . A non-negative real

number R is said to be a permissible rate of transmission if there exists a

TiR
sequence of codes ([e ].T , ,ei) such that Ti -,,, and e -+0 as I - [ [r] is

the integer part of r. The channel coding capacity is then the supremum over

the set of all admissible R.

The additive channel noise has a covariance operator RN.T with finite

trace, for each T > 0. Thus. there exists a zero-mean Gaussian process C with

covariance operator RG.T = RN. T . For any fixed T. the relative entropy of N

with respect to C. whenever T T. PC . is

T T T T
% (N) = JHElog d;" % .~

T T
If PN .G is false, then the relative entropy is defined to be infinite.

Two basic tools for determining coding capacity are Fano's inequality [1] and

Feinstein's Lemma (as modified and generalized by Thomasian. Kadota, and

NcKeague). From Fano's inequality, one can obtain the following result.

Theorem 4: An upper bound on the coding capacity is given by

C K -I Ti [Tc~P + (N)]
T-

where C(P) is the information capacity of the Gaussian channel previously

discussed when H = L2 [0.T ] and the constraint is given by E HI FT.
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As can be seen, the upper bound u'1tained from Fano's inequality depends

heavily on results concerning absolute continuity.

The lower bound on the coding capacity can be determined from Feinstein's

Lemma. often called the Fundamental Lemma. It can be stated as follows:

Theorem 5 [10]: Suppose that pNofI' - pN a.e. dp(x). and that the map g:

(x.y) -, [dNof /dpy](y) is B[H]xEH]/B( I ] measurable. For any real number a

let A = ((xy) C HxH: log[dpy/d " ](x.y) > a). Then for each positive

integer k and F C BCH] there exists a code (k.Fe) such that

& 9 ke-a + Xy(A c ) + XlFC).

In applying Feinstein's Lemma, the set F is typically taken to be those x

satisfying a constraint. Thus, for a code (k.FT.e) as defined above for the

time-continuous additive channel, the measures appearing in the theorem are on

L2 [O.T ] or L2[O.T]xL2 [O,T ], and F would be the set of those x in L2 [O,T ] such

that lx11 2  PT. The application of Feinstein's Lama is to show that

T c T c
pX(FT) "# 0 and Y(X -# 0. as T -* along a subsequence. The constraint a =

a(T) is then related to the constraint and the channel noise.

It can be seen that Feinstein's Lemma, in the complex setup of the

continuous-time channel, supposes that the known signal problem be nonsin-

gular. When this occurs, then from above. pxy - PxPY and in some important

channels the Radon-Nikodym derivative dyd " can be computed using the

known signal and stochastic signal likelihood ratios.

4. Channels with Feedback.

Although the previous results can be applied for channels with feedback.

the introduction of feedback substantially complicates the capacity problem.

In fact, at present the value of the capacity Is not known, for either the
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inforuation capacity or the coding capacity, for any mismatched channel with

memory where the noise covariance %A has infinite-dimensional range space.

This includes not only the continuous-time channels, but also the simplest of

all Gaussian channels with memory: the additive discrete-time channel.

Analysis of feedback channels for continuous-time channels is more conven-

iently carried out using a stochastic calculus formulation. For an illustra-

tion of the relations that exist between absolute continuity, likelihood

ratio, and channel capacity in this framework, see [11].

5. Concluding Remarks.

This discussion has described some relations that exist between well-known

signal detection problems and recent results that have been instrumental in

determining capacity of communication channels with memory. Much work remains

to be done for such channels, and It can be expected that these relations will

continue to play an important role in modeling, analysis, and solution of the

many open problems.
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